Molecular Complexes of Organic Carbonates with Lewis Acids

C. BUSETTO, U. MELIS, U. ROMANO and G. SANTI Snamprogetti, Direzione Ricerca e Sviluppo, San Donato Milanese, Italy Received April 1, 1977

Some compounds of Ti^{IV}, Al^{III}, Sn^{IV} have been employed as catalysts in the synthesis of aromatic carbonates from alkyl carbonates [1]. We suggest that the catalytic activity may be explained in terms of complexes that dimethylcarbonate (DMC) forms with some Lewis acids (*e.g.* TiCl₄, AlCl₃).

Fig. 1. Changes of the C-O stretching of DMC with TiCl₄ concentration (DMC concentration is 35.6 mmol/l). Curve A = DMC; Curve B, C, D: TiCl₄/DMC = 0.30, 0.75, 2.5.

The IR spectra reported in Fig. 1, relative to the carbonylic band of the DMC and of the interaction compound of DMC with TiCl₄, recorded with various molar ratios TiCl₄/DMC (R), show in CH₂Cl₂ a

sensible shift of the C–O stretching from 1750 cm⁻¹ to 1640 cm⁻¹, due to the diminished double-bond character of the C=O bond. The CH₃O–C stretching band shows a shift to higher wavenumber (from 1275 to 1350 cm⁻¹) probably due to a greater double-bond character of the CH₃O–C bond in the complex.

In order to obtain some quantitative data about the stability of these complexes as a function of carbonate basicity and Lewis acid strength we have recorded NMR spectra in CH_2Cl_2 of the following systems: TiCl₄-DMC, Diethylcarbonate (DEC), Ethylphenylcarbonate (EFC) and AlEtCl₂, SnCl₄-DMC. The stability constants of these compounds were calculated by the Benesi-Hildebrand method [2] as applied to NMR spectrometry by Hanna *et al.* [3].

In accordance with the Gutowsky-Saike theory [4] the chemical shifts of the hydrogen atoms of the carbonate, in a fast exchange between the noncomplexed (D) and complexed (AD) states, follow the relationship:

$$\delta = x \delta_0^{D} + x_c \delta_c^{D} \tag{1}$$

where δ_0^{D} and δ_c^{D} are chemical shifts, relative to an arbitrary reference, of non complexed and complexed D, x and x_c are respectively the molar fractions of non complexed and complexed D.

If we take the solvent as reference and assume

$$\Delta_0 = \delta_0^{\mathbf{D}} - \delta_c^{\mathbf{D}}$$
 and $\Delta_{\mathbf{obs}} = \delta_0^{\mathbf{D}} - \delta$

when $|A_0| \ge |D_0|$ we obtain

$$\frac{1}{\Delta_{obs}} = \frac{1}{K\Delta_0} \frac{1}{|A_0|} + \frac{1}{\Delta_0}$$
(2)

where $|A_0|$ and $|D_0|$ are the initial concentrations of the acceptor and donor and K is the formation constant of the AD complex. If we plot $1/\Delta_{obs}$ versus $1/|A_0|$ it is possible to obtain the value of K (Fig. 2, 3). These plots are obtained using a fixed concentration of the carbonate $(10^{-2} M)$ and varying the concentration of the Lewis acid $(10^{-1} + 1 M)$.

In Table I we report the formation constants at 25 °C and the values of the parameters calculated in accordance with [2]. The formation constants of the complexes follow the same order of carbonate basicity:

DEC > DMC > EFC

With reference to the Lewis acids employed, we note that the plot for the system $DMC-AlEtCl_2$ is not linear, due probably to the association of the aluminum compound.

The sequence observed is

 $TiCl_4 > AlEtCl_2 > SnCl_4$

Fig. 2. Plot of $1/\Delta_{obs}$ versus $1/A_0$ for the complexes of DMC with different Lewis acids.

Fig. 3. Plot of $1/\Delta_{obs}$ versus $1/A_0$ for the complexes of TiCl₄ with different organic carbonates.

TABLE I.	Parameters	of Equ	ation (2)	Calculated	for Various
Complexes	5.				

Slope

4.99

56.83

10.88

1.85

14.42

Intercept

2.385

3.665

1.731

2.317

2.568

TABLE	II.	Chemical	Shifts	of	DMC	in	the	Complexes	with
Differen	t L	ewis Acids	•						

K (1/mol)	Compound	τ
$4.78 \times 106.451.59 \times 101.24 \times 1021.78 \times 10$	DMC DMC + SnCl ₄ DMC + TiCl ₄ DMC + AlEtCl ₂	6.29 6.02 ^a 5.87 ^a 5.71 ^a

^aCalculated on the ethyl quartet center.

System

DMC + TiCl₄

DMC + SnCl₄

DEC + TiCl4ª

EFC + TiCl4ª

DMC + AlEtCl₂

 ${}^{\mathbf{a}}\tau$ values extrapolated.

but the shift values found (Table II) show that $A|EtCl_2$ is a more powerful acceptor than $TiCl_4$ and $SnCl_4$, etc.

The shifts in the carbonylic bands of IR spectra and the high values of formation constants of these complexes suggest that between organic carbonates and Lewis acids there exists a strong $n \rightarrow v$ bond rather than a CT type bond, as reported for complexes of carbonates with SO₂ [5].

References

- 1 Ger. Offen., 2, 528, 412, by Snamprogetti S.p.A.
- 2 H. A. Benesi and J. H. Hildebrand, J. Am. Chem. Soc., 71, 2703 (1948).
- 3 M. W. Hanna and A. L. Ashbaugh, J. Phys. Chem., 68, 811 (1964). R. Foster, "Organic Charge-transfer Complexes", Academic Press, London (1969).
- 4 H. S. Gustowsky and A. Saike, J. Chem. Phys., 21, 1688 (1953).
- 5 M. L. Rooney, D. J. Best and E. J. Davis, J. Polym. Sci., Polym. Chem. Ed., 11, 2601 (1973).